\qquad

Quiz 8

Question 1. (10 pts)

(a) Determine whether the function $f(z)=x^{2}-y^{2}+2 x+i(2 x y+2 y)$ is analytic on \mathbb{C}.

Solution: $f(z)=x^{2}-y^{2}+2 x+i(2 x y+2 y)$. So the real part is $u(x, y)=$ $x^{2}-y^{2}+2 x$ and the imaginary part is $v(x, y)=2 x y+2 y$. We have

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=2 x+2, \quad \frac{\partial u}{\partial y}=-2 y \\
& \frac{\partial v}{\partial x}=2 y, \quad \frac{\partial v}{\partial y}=2 x+2
\end{aligned}
$$

The Cauchy-Riemann equations are indeed satisfied. Therefore, f is analytic on \mathbb{C}.
(b) Specify the domain where

$$
g(z)=\frac{z+2 \pi i}{z^{2}+4}
$$

is analytic. Find the derivative of $g(z)$.
Solution: $g(z)$ is defined when $z^{2}+4 \neq 0$, that is, when $z \neq \pm 2 i$. So the domain of g is

$$
\mathbb{C} \backslash\{ \pm 2 i\}
$$

The derivative of g is

$$
g^{\prime}(z)=\frac{(z+2 \pi i)^{\prime}\left(z^{2}+4\right)-(z+2 \pi i)\left(z^{2}+4\right)^{\prime}}{\left(z^{2}+4\right)^{2}}=\frac{4-4 \pi i z-z^{2}}{\left(z^{2}+4\right)^{2}}
$$

Question 2. (10 pts)

Evaluate the following integrals.
(a)

$$
\int_{C}\left(e^{z}+\cos z\right) d z
$$

where C consists of two parts C_{1} and $C_{2} . C_{1}$ is the line segment from the origin to $(1,1)$ and C_{2} is the curve $y=x^{2}$ from $(1,1)$ to $(2,4)$.

Solution: Note that $F(z)=e^{z}+\sin z$ is the antiderivative of $\left(e^{z}+\cos z\right)$. Since the domain of $f(z)=e^{z}+\cos z$ is \mathbb{C}, hence simply-connected, and the curve C is clearly contained in \mathbb{C}. The two end points are

$$
0 \text { and } \quad(2+4 i)
$$

We know that

$$
\int_{C} z^{3} d z=F(2+4 i)-F(0)=e^{2+4 i}+\sin (2+4 i)-1
$$

(b)

$$
\int_{C} \frac{e^{z}}{(z+10)(z-5 i)^{2}} d z
$$

where C is the circle $\{z \in \mathbb{C}:|z-1|=1\}$ oriented counterclockwise.
Solution: Notice that the function $f(z)=\frac{e^{z}}{(z+10)(z-5 i)^{2}}$ is analytic on the region $\Omega=\mathbb{C} \backslash\{-10,5 i\}$. The circle $C=\{z \in \mathbb{C}:|z-1|=1\}$ is contained in Ω with the inside of C lying in Ω. So we can apply Cauchy's Theorem, which implies that

$$
\int_{C} \frac{e^{z}}{(z+10)(z-5 i)^{2}} d z=0
$$

